

Lorraine Gordon

Director, Southern Cross University The National Regenerative Ag Alliance & Farming Together Program Carbon & Cattle Farmer

Livestock and Emissions..... But Why?

- ➤ 16 % of global emissions are from agriculture
- ➢ 81% of those are from livestock
- ➤ 48% of which is beef
- Campaigners are moving to next target from fossil fuels to livestock!
- European Union already have carbon dioxide emissions tariffs on imports
- Carbon neutral Brazilian Beef
- NZ will have farm levy by Jan 25
- MLA carbon neutral targets that means us
- IPPC report advocating diet as the solution "eat less red meat"

Multi Nationals are leading the way in measuring and offsetting emissions, or be named and shamed.

- Fonterra
- Uni Lever
- Nestle
- Mars
- Kellogg
- Pfizer
- Wilmar
- Olam
- Mondelez

FAIRR Initiative Coller Foundation Ltd (70 Trillion membership company) https://www.fairr.org/index

View Company Rankings
Measures ESG Factors
Has a Protein Producer Index

Includes: ≻AACo ≻JBS

Assessment of strategies for reducing enteric methane (Beauchemin, Ungerfeld, Eckard, & Wang, 2020)

	CH₄ decrease	potential				
Strategy	Amount (g/day)	Intensity (g/kg product)	Expected availability	Feasibility of implementing on-farms	Limitations	Key references
Management and breeding Increased animal productivity (through nutrition, genetics, health and	Uncertain (can increase)	Low	Immediate	Potential greatest for production systems that are not already optimized	Adoption limited by knowledge transfer, economics, perception, limitation of resources and others	Capper <i>et al.</i> (2009); Hristov <i>et al.</i> (2013); Legesse <i>et al.</i>
Animal breeding for low-CH ₄ production	Low	Low	Unknown, possibly within 10 years	Can be incorporated into multiple trait selection index	Need robust ways of measuring CH ₄ of large numbers of individual animals. Relationships between CH ₄ production and economically important traits are unknown. Need to know long-term persistency on different diets and effects on animal health	(2016) Pickering <i>et al.</i> (2015); Løvendahl <i>et al.</i> (2018)
Animal breeding for feed efficiency and residual feed intake	Low	Low	Immediate	Can be incorporated into multiple trait selection index	Existence of genotype × environment interactions needs to be determined. Relationship to productivity-related traits at pasture unknown. Lack of information on the biological regulation of the trait	Basarab <i>et al.</i> (2013); Kenny <i>et al.</i> (2018)
Nutrition Lipids	Medium	Medium	Immediate	Feasible for ruminants fed diets, but difficult to implement for grazing ruminants	Can be expensive. Potential negative effects on fibre digestibility. Need more information on fat × diet interactions. Effects on meat and milk quality need further study	Grainger and Beauchemin (2011); Patra (2013)
Concentrates	Low to medium	Low to medium	Immediate	Feasible, but limited scope for further increase in grain feeding	Decrease in enteric CH ₄ does not always reduce total greenhouse gas emissions. Can increase risk of acidosis. Concentrates can be fed to other livestock and consumed by people	Hristov <i>et al.</i> (2013)
Improved forage quality	Highly variable	Low	Immediate	Feasible, but highly dependent upon weather and other environmental factors	Adoption limited by knowledge transfer and potential trade-off between yield and quality. Absolute emissions may increase, but improved animal performance decreases intensity	Hristov <i>et al.</i> (2013)
Rumen microbiome and ferm	entation manipulat	tion			perior	
Vaccine	Unknown, possibly low to medium	Unknown, possibly low to medium	Unknown	Experimental. Limited published results. Would be particularly relevant for grazing ruminants	Effects on CH ₄ production, animal health and productivity will need to be established	Wedlock <i>et al.</i> (2010); https:// www.nzagrc. org.nz/vaccine. html
Early life programming	Unknown	Unknown	Unknown	Experimental. Most feasible for intensive systems, difficult to implement for extensive pasture- based production systems	Research is in early stages. If effective, it may be economically attractive. Implications for animal health and performance unknown. Need to establish long- term persistency	Yáñez-Ruiz <i>et al.</i> (2015)
Chemical inhibitors (3-nitrooxypropanol)	High	High	Currently undergoing approval in some countries	Feasible for ruminants fed diets but difficult to implement for grazing ruminants	Need more information on animal performance, dose × diet effects and safety. Not approved by regulatory agencies. Unknown consumer acceptance	Dijkstra <i>et al.</i> (2018); Ungerfeld (2018)
Algae	Medium to high	Medium to high	Unknown, experimental	Few algae species contain active compounds. Need to dry material, which may require energy	Safety concerns related to bromoforms. Will need approval from regulatory authorities in most countries. Life cycle assessment needed to account for upstream emissions	Machado <i>et al.</i> (2014); Li <i>et al.</i> (2018)
Nitrate	Low to medium	Low to medium	Available, but requires approval by regulatory officials in some countries	Useful in low-protein diets. Can be used in place of urea, maximum of 2% of dietary DM. Can be used in blocks for grazing ruminants	Risk of toxicity to non-adapted animals. Potential increase in N excretion if N requirements of animals are exceeded. Not approved in some countries	van Zijderveld et al. (2011); Lee and Beauchemin (2014)
Tannins	Low to medium	Low to medium	Immediate	Extracts can be added to diets. Tannin-containing forages can be incorporated into pastures	Much of the research has been conducted in vitro. Need more information of effectiveness of different source and types of tannins for CH ₄ reduction. Need information on whether digestibility and performance is negatively affected	Jayanegara <i>et al.</i> (2012); Cobellis <i>et al.</i> (2016)

What's coming

- Macroalgae(Seaweed) Dictyota (brown) Asparagopsis (red) most promising however CO2 emissions from producing, harvesting, drying and transporting?
- Vaccines & chemical inhibitors early life programming—suppress the growth of methanogens but acceptable to consumers?
- **Phytocompounds** essential oils, tannins, saponins, flavonoids and organosulphur compounds. Garlic most promising....tannins in legumes, also help parasites and N utilisation.
- Nutrition lipids (fatty acids) and concentrates
- Alternative sinks such as Nitrates animal and environmental issues around excess nitrate
- Combinations of strategies

But are they effective?

- Animal manipulation (10-15% effective)eg: breeding
- Diet manipulation (20% effective)eg: management
- Rumen manipulation (gut microbes are 50 million years of evolution ahead of us) eg: biological control and vaccines (effective ?)

Eckard, RJ and Clark, H 2018

What the farmer can do now about methane?

- Measure your emissions can't mitigate what you don't know you emitting!
- ✓ Increasing production efficiency, replacing aged stock with young for efficiency. Fewer animals, turned off more quickly, less feed for a given amount of product
- ✓ Animal breeding and genetics based on feed conversion and efficiency
- Mixed legume based pastures biodiversity makes sense
- ✓ Holistic grazing systems reduce the use of synthetic fertilisers by more effective use of nitrogen-fixing plants and manure through animal impact

What else can farmers do ?

✓ Sequester carbon, because you can!Become carbon neutral by:

- Planting trees
- Soil carbon

✓ Get paid for looking after your natural capital

Focus on:

- Carbon sequestration,
- Abatement,
- Biodiversity,
- Water quality,
- Animal health

How:

✓ Adopting Regenerative Agriculture Practices

Moffat Falls Farm – (My Farm at Ebor, Northern NSW)

Beef & Sheep Greenhouse Accounting Tool

Outputs	beef t CO ₂ e/farm	sheep t CO2e/farm	total t CO2e/farm	Summary t CO2e/fa
Scope 1 Emissions				
CO ₂ - Fuel	9.82	0.00	9.82	CO ₂
CO ₂ - Lime	198.00	0.00	198.00	CH ₄
CO ₂ - Urea	0.00	0.00	0.00	N ₂ O
CH ₄ - Fuel	0.00	0.00	0.00	
CH ₄ - Enteric	788.90	0.00	788.90	Brookdown of
CH ₄ - Manure Management	45.82	0.00	45.82	Breakdown of
CH ₄ - Savannah Burning	0.00		0.00	GHGs
N ₂ O - Fertiliser	0.00	0.00	0.00	5% 20%
N ₂ O - Urine and Dung	32.58	0.00	32.58	20/0
N ₂ O - Atmospheric Deposition	3.42	0.00	3.42	
N ₂ O - Leaching and Runoff	21.50	0.00	21.50	
N ₂ O - Savannah Burning	0.00		0.00	
N ₂ O - Fuel	0.07	0.00	0.07	75%
Scope 1 Total	1,100	0	1,100	

Scope 2 Emissions					
Electricity	0.00	0.00			
Scope 2 Total	0	0			

Scope 3 Emissions					
Fertiliser	0.00	0.00	0.00		
Purchased mineral supplementation	0.00	0.00	0.00		
Purchased feed	0.00	0.00	0.00		
Herbicides/pesticides	4.95	0.00	4.95		
Electricity	0.00	0.00	0.00		
Fuel	2.43	0.00	2.43		
Lime	12.50	0.00	12.50		
Purchased livestock	2216.50	0.00	2216.50		
Livestock on agistment					
Scope 3 Total	2236	0	2236		

Carbon Sequestration			
Carbon sequestration in trees	-4,765.50	0.00	-4,765.50
	•		

Net Farm Emissions	-1,429	0	-1,429

Emissions intensity		
Sheep meat (breeding herd) excl. sequestration		kg CO2-e / kg LW
Sheep meat (breeding herd) inc. sequestration		kg CO2-e / kg LW
Wool excl. sequestration		kg CO2-e / kg greasy
Wool inc. sequestration		kg CO2-e / kg greasy
Beef excl. sequestration	11.0	kg CO2-e / kg LW
Beef inc. sequestration	-4.7	kg CO2-e / kg LW

Citation: Lopez M.B., Dunn J., Wiedemann S., Eckard R. (2023). A Greenhouse Accounting Framework for Beef and Sheep properties based on the Australian National Greenhouse Gas Inventory methodology. Updated Feb 2023. http://piccc.org.au/Tools.

